入迷英语

您现在的位置是:首页 > 英语口语 > 正文

英语口语

英语口语例题 英语口语例题及回答

zxc2023-07-10英语口语1

一、包络定理例题?

包络定理是在最大值函数与目标函数的关系中,我们看到,当给定参数 a 之后,目标函数中的选择变量 x 可以任意取值。如果 x 恰好取到此时的最优值,则目标函数即与最大值函数相等。

包络定理即分析参数对函数极值的影响,按情况可分为无约束极值和条件极值。

主要应用

无约束极值

考虑含参量a的函数f(x,a)的无条件极值问题(x是内生变量,a是外生变量)。

显然,一般地其最优解V是参量a的函数,即V(a)。

包络定理指出:V对a的导数等于f对a的偏导数(注意是f对“a所在位”变量的偏导数)。

而且,我们还可以注意到,当目标函数与最大值函数恰好相等时,相 应的目标函数曲线与最大值函数曲线恰好相切,即它们对参数的一阶导数相等。对这一 特点的数学描述就是所谓的“包络定理”。

数理表示:dΦ/da=∂f/∂a(x=x*)

条件极值

包络定理指出,某参数对目标函数极值的影响,等于拉格朗日函数直接对该参数求偏导数,并在最优解处取值的情况。在微观经济学中有广泛应用。

数理表示:dΦ/da=∂L(x,a,λ)/∂a(x=x*)=∂f/∂a-λ∂g/∂a

二、终值定理例题?

【例题•计算题】甲企业现将1000万元资金用于委托理财,以期年收益率为10%,期限3年,请问3年后能取得到期本息多少万元?

『正确答案』

  F=P×(F/P,i,n)

  F=1000×(F/P,10%,3)

  =1331(万元)

  【例题•计算题】甲企业的投资活动经过3年建设期后从第4年年末到第10年年末每年能收回600万元,若利率为10%,请问该投资的规模为多大时才合算?

『正确答案』

  P=A×(P/A,i,n)×(P/F,i,m)

  P=600×(P/A,10%,7)×(P/F,10%,3)

  =2194.58(万元)

  投资规模小于等于2194.58万元时才合算。

三、ncf计算例题?

净现金流量NCF=营业收入-付现成本-所得税;

净现金流量=净利润+折旧=(营业收入-相关现金流出-折旧)*(1-税率)+折旧

四、货币互换例题?

    某化工厂在1987年底筹措了250亿日元的项目资金,期限十年,固定利率5%。

计划1992年项目投产后以创汇的美元来归还日元贷款。这样企业到偿还贷款时,将承受一个较大的汇率风险。

如果汇率朝着不利于企业的方向波动,那么即使1美元损失10日元,企业亦将多支付16.56亿日元。而日元兑美元的汇率几年里波动三四十日元是极平常的事情。

所以,未雨绸缪,做好保值工作对于企业十分重要。以下是该企业通过货币互换对债务进行保值的具体做法。(一)交易的目的及市场行情分析    1990年上半年,某化工厂在金融机构专家的指导下,通过对美、日两国基本经济因素的分析和比较,认为从中长期来看,日元升值的可能性是很大的。预期日元经过三次大的升值和回跌循环期(第一次循环期:1971年——1975年;第二次循环期,1975年——1985年;第三次循环期;1985年至目前),从1992年可能进入一个新的日元升值周期。这样企业从1992年还款起,将会有很大的汇率风险。

在1988年日元曾两度升值,其汇率为120日元,到1990年初已贬值到145日元。从技术图上分析日元还将从145日元兑1美元向下贬值至155日元水平。另外,有信息表明日本资金正大量外流,这对日元汇价造成很大的压力。

因此,该企业预计1990年可能出现美元兑日元的相对高值时机,到时可以通过货币互换这一有效的保值工具,把250亿日元债务互换为美元债务,以避免长期汇率波动的风险。    在筹资时,该企业请有关金融专家为项目制定过一个筹资方案,如果借日元,项目设计的汇率水平应该是1美元兑148日元,如果是借美元,浮动利率是6个月,或者是固定利率8.7%。

由于1987年底,日元货款利率明显比美元利率低3.7个百分点,如果还款时日元平均升值达1美元兑121.50日元,那么借日元所得到的利差正好抵销对美元的汇率损失。如果企业能在行情有利的情况下,不失时机地运用货币互换,把汇率固定在一个比较理想的水平,这样不但能避免以后日元升值带来的汇率风险,另一方面企业已经得到前三年借日元的利差好处。如果汇率能固定在设计的汇率水平以上,这样又可以大大降低项目的预算成本。(二)实际交易    1990年2月下旬,日本股票连连暴跌,日经平均指数跌幅达30%,由此引起日元汇价大跌。

美元兑日元汇价从145日元经过不到一个月的时间,冲破了150日元台阶,3月下旬已达154日元,以后又升至160日元。当时有的国外金融专家分析美元兑日元汇价会抵170日元,甚至有的预测可能会到180日元。

但是该企业比较客观实际,认为外汇趋势是很观预测的,把握当前才是十分重要。1美元兑160日元已比该企业预期和希望的汇价要好,比项目筹资方案中设计的汇价高出12日元(设计汇价是1美元兑148日元)。

利率方面,由于1990年初市场日元利率已是高水平,比原债务5%固定利率约上升了3个百分点。

所以,按当时的互换市场已能对日元债务进行保值,并且从汇率和利率得益中可以大大降低项目预算成本。

故该企业毅然决定于1990年4月份委托一家金融机构及时成交了该笔日元对美元的债务互换。

最终把250亿日元债务以160日元兑1美元的汇率互换成1.5625亿美元债务,并且支付美元浮动利率6个月。    

五、aqi计算例题?

AQI的计算公式如下:

序号1=(6-5)(2-3)/(4-3)+5

其中:

序号 1 : I = 空气质量指数,即AQI,输出值;

序号 2 : C = 污染物浓度,输入值;

序号 3: Clow= 小于或等于C的浓度限值,常量;

序号 4 : Chigh= 大于或等于C的浓度限值,常量;

序号 5: Ilow= 对应于Clow的指数限值,常量;

序号 6 : Ihigh= 对应于Chigh的指数限值,常量。

利用这个公式,根据污染物浓度C,可以方便地计算出空气质量指数I。比如要计算PM2.5浓度等于68.5μg/m3对应的AQI,查浓度限值表可知,它在65.5和150.4之间。所以Clow = 65.5,Chigh = 150.4,对应的Ilow = 151, Ihigh = 200,套入公式计算,

六、复根公式例题?

复数共轭是指a+bi与a-bi,这里a,b都是实数.

产生这对共轭复根的二次方程为k[(x-a)^2+b^2]=0

一般的实系数二次方程,ax^2+bx+c=0,当判别式△=b^2-4ac

七、年金现值例题?

【例题1】拟在5年后还清10000元债务,从现在起每年末等额存入银行一笔款项。假设银行存款利率为10%,每年需要存入多少元?

【答案】A=10000/(F/A,10%,5)=1638(元)

投资回收额

【例题2】假设以10%的利率借款20000元,投资于某个寿命为10年的项目,每年至少要收回多少现金才是有利的?

【答案】A=20000/(P/A,10%,10)=20000/6.1446=3255 (元)

八、公差求和例题?

已知数列1,3,5,7,9…2n-1是公差d=2的数列,求数列前n项的和。

解:Sn=n(1+2n-1)/2=n²

九、npv计算例题?

假设两个项目A和B,都是投资10万元,贴现率10%,预期收入和净现值如下。(假设项目周期都只有5年,单位:万)

十、均值定理例题?

均值定理:

  已知x,y∈R+,x+y=S,x·y=P

  (1)如果P是定值,那么当且仅当x=y时,S有最小值;

  (2)如果S是定值,那么当且仅当x=y时,P有最大值。

  或

  当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号 。

  (3)设X1,X2,X3,……,Xn为大于0的数。

  则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn

  (一定要熟练掌握)

  当a、b、c∈R+, a + b + c = k(定值)时, abc≤((a+b+c)/3)3=k^3/27 (定值) 当且仅当a=b=c时取等号。

  例题:1。求x+y-1的最小值。

  分析:此题运用了均值定理。∵x+y≥2√xy。 ∴x+y-1≥2√xy -1